The use of piezoceramic materials for structural sensing and actuation is a fairly well developed practice that has found use in a wide variety of applications. However, just as advanced composites offer numerous benefits over traditional engineering materials for structural design, actuators that utilize the active properties of piezoelectric fibers can improve upon many of the limitations encountered when using monolithic piezoceramic devices. Several new piezoelectric fiber composites have been developed; however, almost all studies have implemented these devices such that they are surface‐bonded patches used for sensing or actuation. This paper will introduce a novel active piezoelectric structural fiber that can be laid up in a composite material to perform sensing and actuation, in addition to providing load bearing functionality. The sensing and actuation aspects of this multifunctional material will allow composites to be designed with numerous embedded functions, including structural health monitoring, power generation, vibration sensing and control, damping, and shape control through anisotropic actuation. This effort has developed a set of manufacturing techniques to fabricate the multifunctional fiber using a SiC fiber core and a BaTiO3 piezoelectric shell. The electromechanical coupling of the fiber is characterized using an atomic force microscope for various aspect ratios and is compared to predictions made using finite element modeling in ABAQUS. The results show good agreement between the finite element analysis model and indicate that the fibers could have coupling values as high as 68% of the active constituent used.