Airborne molecular contaminations (AMCs) have been recognized as a major problem in semiconductor fabrication. Enormous technical and financial efforts are made to remove or at least reduce these contaminations in production environments to increase yield and process stability. It can be shown that AMCs from various sources in laser devices have a negative impact on quality and lifetime of lasers and optical systems. Outgassing of organic compounds, especially condensable compounds were identified as the main source for deterioration of optics. These compounds can lead to hazing on surfaces of optics, degradation of coating, reducing the signal transmission or the laser signal itself and can enhance the probability of laser failure and damage. Sources of organic outgassing can be molding materials, resins, seals, circuit boards, cable insulation, coatings, paints and others. Critical compounds are siloxanes, aromatic amines and high boiling aromatic hydrocarbons like phthalates which are used as softeners in plastic materials. Nowadays all sensitive assembly steps are performed in controlled cleanroom environments to reduce risks of contamination. We will demonstrate a high efficient air filter concept to remove AMCs for production environments with special AMC filters and methods for the qualification and monitoring of these environments. Additionally, we show modern techniques and examples for the pre-qualification of materials. For assembled components, we provide sampling concepts for a routine measurement for process, component and product qualification. A careful selection of previously tested and certified materials and components is essential to guarantee the quality of lasers and optical devices.