Mechanical properties of wood composites made from multiple wood species (50% Crimean pine, 30% Eastern Black Sea oak, 15% quaking aspen, and 5% wood machining residues) were evaluated using various amount of glass wool (GW) and stone wool (SW) additives. A total of 70 experimental panels were produced with a target density of 640 kg/m 3 . The bending strength, modulus of elasticity, tensile strength parallel to the surface of boards, tensile strength perpendicular to the surface of boards (internal bond), and cutting (shear) strength parallel to the surface of boards were determined. After statistical analysis, the results indicated that the SW and GW additives decreased the bending strength and modulus of elasticity by 49% in almost all boards. The addition of SW resulted in a 6% reduction in the tensile strength parallel to the surface. Relative to SW, GW resulted in an additional 8% reduction in shear strength, a 3% reduction in the screw tensile strength perpendicular to the surface, and a 6% reduction in the tensile strength parallel to the surface. Thus, the SW and GW additives decreased all the selected mechanical properties of wood composites.