Abstract. A k-output spiking neural P system (SNP) with output neurons, O1, ..., O k , generates a tuple (n1, ..., n k ) of positive integers if, starting from the initial configuration, there is a sequence of steps such that during the computation, each Oi generates exactly two spikes a a (the times the pair a a are generated may be different for different output neurons) and the time interval between the first a and the second a is ni. After the output neurons have generated their pairs of spikes, the system eventually halts. Another model, called k-train SNP, has only one output neuron. It generates a k-tuple (n1, ..., n k ) if, starting from the initial configuration, the output neuron O generates the spike train aa...a with exactly k + 1 a's such that the interval between the i th a and the i + 1 st a is ni, and the system eventually halts. We assume, without loss of generality, that each neuron in the SNP is either bounded or unbounded. (Bounded here means that there is a fixed constant c such that at any time during the computation, the number of spikes in the neuron is at most c. Otherwise, the neuron is unbounded.) It is known that 1-output SNPs (= 1-train SNPs) are universal, i.e., they generate exactly the recursively enumerable sets over N . Here, we show the following:1. For k ≥ 1, a set Q ⊆ N k is semilinear if and only if it can be generated by a k-output SNP, where every unbounded neuron satisfies the property that once it starts "spiking" it will no longer receive future spikes (but can continue spiking). This result also holds for k-train SNP. 2. The set Q = {(m, 2m) | m ≥ 1} (which is semilinear) cannot be generated by any 2-output bounded SNP (i.e., SNP all of whose neurons are bounded). Thus, for k ≥ 2, there are semilinear sets over N k that cannot be generated by k-output bounded SNPs. This contrasts a known result that 1-output bounded SNPs generate all semilinear sets over N . 3. For k ≥ 2, k-output bounded SNPs are computationally more powerful than k-train bounded SNPs. (They are identical when k = 1.) 4. For k ≥ 1, k-output bounded SNPs and k-train bounded SNPs can be characterized by certain classes of nondeterministic finite automata with monotonic counters.