We assessed in protein droplet models the potential use of the formaldehyde condensation method for histochemical demonstration of a wide range of catecholamines and resorcinolamines. The experiments showed that all of the amines tested, except salbutamol and carbuterol, formed fluorophores, and that the fluorescence was specific [i.e., there was no fluorescence in the absence of formaldehyde, the fluorescence was quenched by water, and the fluorophores were subject to photodecomposition by the exciting (405-nm) light]. Peak wavelengths of the emission spectra were 480-485 nm for fluorophores of resorcinolamine derivatives. The fluorescence intensity of the catecholamines was greater than that of the resorcinolamines. Fluorophore formation was not hindered by substitution of t-butyl, phenylisoprophyl, or p-hydroxyphenylisopropyl on the amino-N in catecholamines (t-butylnorepinephrine, Cc24, Cc25, respectively) or resorcinolamines (terbutaline, Th1161, fenoterol, respectively), and fluorophores also formed for catecholamines with the amino-N in a ring structure (rimiterol) or with a long alkyl chain substituted on the amino-N (hexoprenaline). Our study showed that fluorescence microphotometry can be used to detect a range of drugs that are catecholamines or resorcinolamines, and hence it should be possible to use this technique to study the properties of dissipation of these amines in tissues.