Two quasi-one-dimensional (quasi-1D) compounds, [4'-CH(3)Bz-4-RPy][Ni(mnt)(2)] (mnt(2-) = maleonitriledithiolate), where 4'-CH(3)Bz-4-RPy(+) = 1-(4'-methylbenzyl)pyridinium (denoted as compound 1) and 1-(4'-methylbenzyl)-4-aminopyridinium (denoted as compound 2), show a spin-Peierls-like transition with T(C) approximately 182 K for 1 and T(C) approximately 155 K for 2. The enthalpy changes for the transition are estimated to be DeltaH = 316.6 J.mol(-1) for 1 and 1082.1 J.mol(-1) for 2. From fits to the magnetic susceptibility, the magnetic exchange constants in the gapless state are calculated to be J = 166(2) K with g = 2.020(23) for 1 versus J = 42(0) K with g = 2.056(5) for 2. In the high-temperature (HT) phase, 1 and 2 are isostructural and crystallize in the monoclinic space group P2(1)/c. The nonmagnetic cations and paramagnetic anions form segregated columns with regular anionic and cationic stacks. In the low-temperature (LT) phase, the crystals of the two compounds undergo a transformation to the triclinic space group P-1, and both anionic and cationic stacks dimerize. In the transformation from the HT to LT phases, the two compounds exhibit divergent structural features, with lattice compression for 1 but lattice expansion for 2, due to intermolecular slippage. Combined with our previous studies, it is also noted that the transition temperature, T(C), is qualitatively related to the cell volume in the HT phase for the series of compounds [1-(4'-R-benzylpyridinium][Ni(mnt)(2)] (where R represents the substituent). When there is a single substituent in the para position of benzene, giving a larger cell volume, the transition temperature increases.