The Chow rings of hyperKähler varieties are conjectured to have a particularly rich structure. In this paper, we focus on the locally complete family of double EPW sextics and establish some properties of their Chow rings. First, we prove a Beauville–Voisin type theorem for zero-cycles on double EPW sextics; precisely, we show that the codimension-4 part of the subring of the Chow ring of a double EPW sextic generated by divisors, the Chern classes and codimension-2 cycles invariant under the anti-symplectic covering involution has rank one. Second, for double EPW sextics birational to the Hilbert square of a K3 surface, we show that the action of the anti-symplectic involution on the Chow group of zero-cycles commutes with the Fourier decomposition of Shen–Vial.