We use molecular dynamics (MD) simulation techniques to study the regrowth of nanometric multigate Si devices, such as fins and nanowires, surrounded by free surfaces and interfaces with amorphous material. Our results indicate that atoms in amorphous regions close to lateral free surfaces or interfaces rearrange at a slower rate compared to those in bulk due to the discontinuity of the lateral crystalline template. Consequently, the recrystallization front which advances faster in the device center than at the interfaces adopts new orientations. Regrowth then proceeds depending on the particular orientation of the new amorphous/crystal interfaces. In the particular case of (110) oriented fins, the new amorphous/crystal interfaces are aligned along the (111) direction, which produces frequent twining during further regrowth. Based on our simulation results, we propose alternatives to overcome this defected recrystallization in multigate structures: device orientation along (100) to prevent the formation of limiting {111} I amorphous/crystal interfaces and presence of a crystalline seed along the device body to favor regrowth perpendicular to the lateral surfaces/interfaces rather than parallel to them. (C) 2012 American Institute of Physics. [doi :10.1063/1.3679126