This paper presents the comparative analysis of MHD boundary layer fluid flow around a linearly stretching surface in the presence of radiative heat flux, heat generation/absorption, thermophoresis velocity, and chemical reaction effects in a permeable surface. The governing equations are highly nonlinear PDEs which are converted into coupled ODEs with the help of dimensionless variables and solved by using semianalytical techniques. The numerical and graphical outcomes are observed and presented via tables and graphs. Also, the Nusselt and Sherwood numbers and skin friction coefficient are illustrated by tables. On observation of heat and mass transfer, it was noticed that Maxwell fluid dominates the other fluids such as Newtonian, Williamson, and Casson fluid due to high rate of thermal conductivity, and hence, Maxwell fluid has better tendency for heat and mass transfer than other Newtonian and non-Newtonian fluids.