Hourly concentrations of heavy metals in PM 10 samples were continuously measured using Laser Induced Breakdown Spectroscopy (LIBS) to determine the metal distribution among Asian Dust (AD) events, local pollution events, and nonevents. Quantification of metals was performed by establishing a calibration line between 24 h average data determined by the ICP-MS after filter sampling and LIBS intensity data. It was found that in AD and local pollution events, significant anthropogenic heavy metals, such as Pb, Cr, Ni, and Zn, were detected compared to a nonevent, and that crustal elements (e.g., Al, Ca, Mg) were more abundant in the AD events than those in a local pollution event or nonevent. The AD events were further classified into "nonpolluted AD" and "polluted AD" events, depending on the air mass transport pathways. During "polluted AD" events where the air mass passed over industrialized zones, both crustal (Al, Ca, Mg) and anthropogenic (Cr, Ni, Zn) metal elements simultaneously increased with time, suggesting that the AD particles could not only include crustal elements but also have a significant quantity of anthropogenic heavy metals. The concentration of anthropogenic heavy metals (Cr + Pb + Zn) was the highest in the AD3 event in order of AD3 (polluted) > AD1 (polluted) > local pollution > AD2 (nonpolluted). However, the PM 10 -weighted value (Cr + Pb + Zn/PM 10 ) was the highest in the local pollution event where concentrations of only anthropogenic heavy metals increased. Also, the hourly LIBS data was successfully used to discriminate metal contributions between AD events and local pollution events or among AD events by employing a chemometric method.