MicroRNAs (miRNA) are short non-coding RNA molecules that regulate a variety of biological processes. The role of miRNAs in BMP2-mediated biological processes is of considerable interest. A comparative miRNA array led to the isolation of several BMP2-responsive miRNAs. Among them, miR-199a* is of particular interest, because it was reported to be specifically expressed in the skeletal system. Here we demonstrate that miR199a* is an early responsive target of BMP2: its level was dramatically reduced at 5 h, quickly increased at 24 h and remained higher thereafter in the course of BMP2-triggered chondrogenesis of a micromass culture of pluripotent C3H10T1/2 stem cells. miR-199a* significantly inhibited early chondrogenesis, as revealed by the reduced expression of early marker genes for chondrogenesis such as cartilage oligomeric matrix protein (COMP), type II collagen, and Sox9, whereas anti-miR-199a* increased the expression of these chondrogenic marker genes. A computer-based prediction algorithm led to the identification of Smad1, a well established downstream molecule of BMP-2 signaling, as a putative target of miR-199a*. The pattern of Smad1 mRNA expression exhibited the mirror opposite of miR199a* expression following BMP-2 induction. Furthermore, miR-199a* demonstrated remarkable inhibition of both endogenous Smad1 as well as a reporter construct bearing the 3-untranslated region of Smad1 mRNA. In addition, mutation of miR-199a* binding sites in the 3-untranslated region of Smad1 mRNA abolished miR-199a*-mediated repression of reporter gene activity. Mechanism studies revealed that miR-199a* inhibits Smad1/Smad4-mediated transactivation of target genes, and that overexpression of Smad1 completely corrects miR-199a*-mediated repression of early chondrogenesis. Taken together, miR-199a* is the first BMP2 responsive microRNA found to adversely regulate early chondrocyte differentiation via direct targeting of the Smad1 transcription factor.
MicroRNAs (miRNAs)3 are a class of short (ϳ20 -24 nucleotide) non-coding single-stranded RNA molecules that are important regulators of cellular gene expression. First discovered in 1993, they are thought to regulate the expression of approximately one-third of all mammalian genes (1). Functioning at the post-transcriptional level, miRNAs inhibit mRNA expression by binding to the 3Ј-untranslated region (3Ј-UTR) of mRNA before directing the repression of translation and/or mRNA degradation. They have been implicated as important regulators of a variety of biological processes including cell proliferation, differentiation, development, and tumorigenesis (2-9).Mature single-stranded miRNA is generated from a long primary genomic transcript (pri-miRNA), which is processed in the nucleus by the enzymes Drosha and DGCR8, resulting in the excision of a stem loop structure. The resulting 60 -80-nucleotide precursor miRNA (pre-miRNA) is exported into the cytoplasm by Exportin 5. In the cytoplasm, the RNase III enzyme Dicer processes the precursor miRNA to generate a short RNA duple...