Background
Members of the transforming growth factor beta (TGF‐β) family are secreted proteins that regulate skeletal development. TGF‐β signaling is critical in embryonic development of the annulus fibrosus (AF) of the intervertebral disc (IVD). To address the question of the role of TGF‐β signaling in postnatal development and maintenance of the skeleton, we generated mice in which
Tgfbr2
was deleted at 2‐weeks of age in Aggrecan (Acan)‐expressing cells using inducible Cre/LoxP recombination.
Methods
Localization of Cre recombination was visualized by crossing Acan
tm1(cre/ERT2)Crm
mice to fluorescent mTmG reporter mice. Acan
tm1(cre/ERT2)Crm
mice were mated to
Tgfbr2
LoxP/LoxP
mice and Cre recombinase was activated by tamoxifen injection at 2‐weeks postnatally. Following tamoxifen injection, mice were aged to 3, 6, and 12‐months and control mice were compared to the experimental (cKO) group. Mice were initially analyzed using X‐ray and skeletal preparations. Sternocostal joints and IVD tissues were further analyzed histologically by hematoxylin and eosin (H&E), Safranin O, and Picrosirius Red staining as well as Col10 immunostaining.
Results
Cre recombination was observed in the IVD and sternocostal joints. X‐ray analysis revealed osteophyte formation within the disc space of 12‐month‐old cKO mice. Skeletal preparations confirmed calcification within the IVD and the sternocostal joints in cKO mice. H&E staining of cKO IVD revealed disorganized growth plates, delay in the formation of the bony endplate, and Col10 staining in the AF indicative of ectopic endochondral bone formation. Furthermore, proteoglycan loss was observed and collagen bundles within the inner AF were thinner and less organized. Alterations in the IVD were apparent beginning at 3 months and were progressively more visible at 6 and 12 months. Similarly, histological analysis of cKO sternocostal joints revealed joint calcification, proteoglycan loss, and disorganization of the collagen architecture at 12 months of age.
Conclusions
TGF‐β signaling is important for postnatal development and maintenance of fibrocartilaginous IVD and sternocostal joints.