“…Following synaptic release, glutamate uptake and degradation are tightly regulated to achieve temporal and spatial signaling specificity and prevent cellular excitotoxicity (Kim et al, 2011; Sattler and Rothstein, 2006; Sheldon and Robinson, 2007). Currently, astrocytes are considered the sole glial cell type that contributes to glutamate uptake and degradation in the CNS (Jayakumar and Norenberg, 2016; Liang et al, 2006; Ortinski et al, 2010; Papageorgiou et al, 2018; Schousboe et al, 2013; Schousboe, 2019; Sun et al, 2017; Tani et al, 2014; Trabelsi et al, 2017; Yuan et al, 2017), as they express high levels of glutamate transporters and glutamine synthetase (GS), an enzyme that converts glutamate into glutamine. In keeping with this view, GS is frequently used as an astrocyte-specific marker (Armbruster et al, 2016; Habbas et al, 2015; Okuda et al, 2014; Papageorgiou et al, 2018; Theofilas et al, 2017; Tong et al, 2014).…”