Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients, EBioMedicine (2020), doi: https://doi.Abstract Background: The dynamic changes of lymphocyte subsets and cytokines profiles of patients with novel coronavirus disease (COVID-19) and their correlation with the disease severity remain unclear. Methods: Peripheral blood samples were longitudinally collected from 40 confirmed COVID-19 patients and examined for lymphocyte subsets by flow cytometry and cytokine profiles by specific immunoassays. Findings: Of the 40 COVID-19 patients enrolled, 13 severe cases showed significant and sustained decreases in lymphocyte counts [0·6 (0·6-0·8)] but increases in neutrophil counts [4·7 (3·6-5·8)] than 27 mild cases [1.1 (0·8-1·4); 2·0 (1·5-2·9)].Further analysis demonstrated significant decreases in the counts of T cells, especially CD8 + T cells, as well as increases in IL-6, IL-10, IL-2 and IFN-γ levels in the peripheral blood in the severe cases compared to those in the mild cases. T cell counts and cytokine levels in severe COVID-19 patients who survived the disease gradually recovered at later time points to levels that were comparable to those of the mild cases.Moreover, the neutrophil-to-lymphocyte ratio (NLR) (AUC=0·93) and neutrophil-to-CD8 + T cell ratio (N8R) (AUC =0·94) were identified as powerful prognostic factors affecting the prognosis for severe COVID-19.Interpretation: The degree of lymphopenia and a proinflammatory cytokine storm is higher in severe COVID-19 patients than in mild cases, and is associated with the disease severity. N8R and NLR may serve as a useful prognostic factor for early 4 identification of severe COVID-19 cases.
Repeated cocaine treatment and withdrawal produces changes in brain function thought to be involved in relapse to drug use. Withdrawal from repeated cocaine reduced in vivo extracellular glutamate in the nucleus accumbens of rats by decreasing the exchange of extracellular cystine for intracellular glutamate. In vivo restoration of cystine/glutamate exchange by intracranial perfusion of cystine or systemically administered N-acetylcysteine normalized the levels of glutamate in cocaine-treated subjects. To determine if the reduction in nonvesicular glutamate release is a mediator of relapse, we examined cocaine-primed reinstatement of drug seeking after cocaine self-administration was stopped. Reinstatement was prevented by stimulating cystine/glutamate exchange with N-acetylcysteine and restoring extracellular glutamate. Thus, withdrawal from repeated cocaine increases susceptibility to relapse in part by reducing cystine/glutamate exchange, and restoring exchanger activity prevents cocaine-primed drug seeking.
Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients, EBioMedicine (2020), doi:
Basal extracellular glutamate sampled in vivo is present in micromolar concentrations in the extracellular space outside the synaptic cleft, and neither the origin nor the function of this glutamate is known. This report reveals that blockade of glutamate release from the cystine-glutamate antiporter produced a significant decrease (60%) in extrasynaptic glutamate levels in the rat striatum, whereas blockade of voltage-dependent Na+ and Ca2+ channels produced relatively minimal changes (0-30%). This indicates that the primary origin of in vivo extrasynaptic glutamate in the striatum arises from nonvesicular glutamate release by the cystine-glutamate antiporter. By measuring [35S]cystine uptake, it was shown that similar to vesicular release, the activity of the cystine-glutamate antiporter is negatively regulated by group II metabotropic glutamate receptors (mGluR2/3) via a cAMP-dependent protein kinase mechanism. Extracellular glutamate derived from the antiporter was shown to regulate extracellular levels of glutamate and dopamine. Infusion of the mGluR2/3 antagonist (RS)-1-amino-5-phosphonoindan-1-carboxylic acid (APICA) increased extracellular glutamate levels, and previous blockade of the antiporter prevented the APICA-induced rise in extracellular glutamate. This suggests that glutamate released from the antiporter is a source of endogenous tone on mGluR2/3. Blockade of the antiporter also produced an increase in extracellular dopamine that was reversed by infusing the mGluR2/3 agonist (2R,4R)-4-aminopyrrolidine-2,4-dicarboxlylate, indicating that antiporter-derived glutamate can modulate dopamine transmission via mGluR2/3 heteroreceptors. These results suggest that nonvesicular release from the cystine-glutamate antiporter is the primary source of in vivo extracellular glutamate and that this glutamate can modulate both glutamate and dopamine transmission.
Glucagon-like peptide-1 (GLP-1) is an endogenous insulinotropic peptide secreted from the gastrointestinal tract in response to food intake. It enhances pancreatic islet -cell proliferation and glucosedependent insulin secretion, and lowers blood glucose and food intake in patients with type 2 diabetes mellitus (T2DM). diabetes ͉ exendin-4 ͉ neurodegeneration ͉ neuroprotection ͉ stroke
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.