Resumo -O objetivo deste trabalho foi estimar e mapear as áreas com as culturas de soja e milho, no Paraná, com uso de imagens multitemporais EVI/Modis. Foram avaliados os anos-safra de 2004/2005 a 2007/2008. Em razão da alta dinâmica temporal e da heterogeneidade de datas de semeadura das culturas no estado, foram utilizadas cenas que contemplavam as fases de pré-plantio e de desenvolvimento inicial das culturas, para gerar a imagem de mínimo EVI (IMIE), e cenas que consideravam o pico vegetativo das culturas, para gerar a imagem de máximo EVI (IMAE). Estas imagens foram utilizadas para gerar a composição colorida RGB (R, IMAE; GB, IMIE), o que permitiu a confecção de máscara das áreas com soja e milho. As estimativas das áreas de máscara por município foram comparadas com dados oficiais de produção agrícola municipal, tendo-se observado bons ajustes (R²>0,84, d>0,95, c>0,85) entre os dados. Para a avaliação da exatidão espacial das máscaras, imagens Landsat-5/TM e AWiFS/IRS foram usadas como referência para construção da matriz de erros. Os resultados obtidos são indicativos de que a metodologia proposta é altamente eficiente e pode ser utilizada para mapeamento dessas culturas.Termos para indexação: classificação de imagens, distribuição espacial de culturas, índice de vegetação, mapeamento, previsão de safras, sensoriamento remoto.
Estimation of summer crop areas in the state of Paraná, Brazil, using multitemporal EVI/Modis imagesAbstract -The objective of this work was to estimate and map crop areas with soybean and corn in the state of Paraná, Brazil, using EVI/Modis images. The crop seasons from 2004/2005 to 2007/2008 were evaluated. Due to the high temporal dynamics and difference in sowing dates of the cultures within the state, scenes containing the pre-planting and initial crop development phases were used to obtain the minimum EVI image (IMIE), and scenes at the peak of the crop cycle were used to obtain the maximum EVI image (IMAE). These images were used to generate the RGB color composition (R, IMAE; GB, IMIE), which allowed for the creation of masks of the areas planted with soybean and corn. The estimation of masked areas by municipality was compared with the municipal agricultural production official data, and good fits (R²>0. 84, d>0.95, c>0.85) were observed between data. For spatial accuracy assessment, Landsat-5/TM and AWiFS/IRS images were used as references to build the error matrix. The obtained results indicate that the proposed methodology is highly efficient and may be used as a model for cropland mapping.