2019
DOI: 10.1051/matecconf/201929204001
|View full text |Cite
|
Sign up to set email alerts
|

Spaces of polynomial and nonpolynomial spline-wavelets

Abstract: This paper, discusses spaces of polynomial and nonpolynomial splines suitable for solving the Hermite interpolation problem (with first-order derivatives) and for constructing a wavelet decomposition. Such splines we call Hermitian type splines of the first level. The basis of these splines is obtained from the approximation relations under the condition connected with the minimum of multiplicity of covering every point of (α, β) (almost everywhere) with the support of the basis splines. Thus these splines bel… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 8 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?