This paper, discusses spaces of polynomial and nonpolynomial splines suitable for solving the Hermite interpolation problem (with first-order derivatives) and for constructing a wavelet decomposition. Such splines we call Hermitian type splines of the first level. The basis of these splines is obtained from the approximation relations under the condition connected with the minimum of multiplicity of covering every point of (α, β) (almost everywhere) with the support of the basis splines. Thus these splines belong to the class of minimal splines. Here we consider the processing of flows that include a stream of values of the derivative of an approximated function which is very important for good approximation. Also we construct a splash decomposition of the Hermitian type splines on a non-uniform grid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.