SUMMARYMuscle is an established paradigm for analysing the cell differentiation programs that underpin the production of specialised tissues during development. These programs are controlled by key transcription factors, and a well-studied regulator of muscle gene expression is the conserved transcription factor Mef2. In vivo, Mef2 is essential for the development of the Drosophila larval musculature: Mef2-null embryos have no differentiated somatic muscle. By contrast, a similar phenotype has not been seen in analyses of the function of Mef2 genes in other examples of myogenesis. These include using conditional mutant mice, using morpholinos in zebrafish and using hypomorphic mutants in Drosophila adult development. However, we show here that Mef2 is absolutely required for a diverse range of Drosophila adult muscle types. These include the dorso-longitudinal muscles (DLMs), the largest flight muscles, which are produced by tissue remodelling. Furthermore, we demonstrate that Mef2 has temporally separable functions in this remodelling and in muscle maintenance. Drosophila adult muscles are multi-fibre and physiologically diverse, in common with vertebrate skeletal muscles, but in contrast to Drosophila larval muscles. These results therefore establish the importance of Mef2 in multiple roles in examples of myogenesis that have parallels in vertebrates and are distinct from that occurring in Drosophila embryogenesis.