Long duration recordings of ECG signals require high compression ratios, in particular when storing on portable devices. Most of the ECG compression methods in literature are based on wavelet transform while only few of them rely on sparsity promotion models. In this paper we propose a novel ECG signal compression framework based on sparse representation using a set of ECG segments as natural basis. This approach exploits the signal regularity, i.e. the repetition of common patterns, in order to achieve high compression ratio (CR). We apply k-LiMapS as finetuned sparsity solver algorithm guaranteeing the required signal reconstruction quality (PRD). Extensive experiments of our method and of four competitors (namely ARLE, Rajoub, SPIHT, TRE) have been conducted on all the 48 records of MIT-BIH Arrhythmia Database. Our method achieves average performances that are 3 times higher than the competitor results. In particular the compression ratio gap between our method and the others increases with the PRD growing.