2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP) 2015
DOI: 10.1109/camsap.2015.7383825
|View full text |Cite
|
Sign up to set email alerts
|

Sparse-based estimators improvement in case of Basis mismatch

Abstract: Compressed sensing theory promises to sample sparse signals using a limited number of samples. It also resolves the problem of under-determined systems of linear equations when the unknown vector is sparse. Those promising applications induced a growing interest for this field in the past decade. In compressed sensing, the sparse signal estimation is performed using the knowledge of the dictionary used to sample the signal. However, dictionary mismatch often occurs in practical applications, in which case the … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 26 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?