2018
DOI: 10.1007/978-3-030-04182-3_37
|View full text |Cite
|
Sign up to set email alerts
|

Sparse Feature Learning Using Ensemble Model for Highly-Correlated High-Dimensional Data

Abstract: High-dimensional highly correlated data exist in several domains such as genomics. Many feature selection techniques consider correlated features as redundant and therefore need to be removed. Several studies investigate the interpretation of the correlated features in domains such as genomics, but investigating the classification capabilities of the correlated feature groups is a point of interest in several domains. In this paper, a novel method is proposed by integrating the ensemble feature ranking and co-… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2022
2022
2023
2023

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 18 publications
0
0
0
Order By: Relevance