2018
DOI: 10.33232/bims.0081.5.22
|View full text |Cite
|
Sign up to set email alerts
|

Sparsification of Matrices and Compressed Sensing

Abstract: Compressed sensing is a signal processing technique whereby the limits imposed by the Shannon-Nyquist theorem can be exceeded provided certain conditions are imposed on the signal. Such conditions occur in many real-world scenarios, and compressed sensing has emerging applications in medical imaging, big data, and statistics. Finding practical matrix constructions and computationally efficient recovery algorithms for compressed sensing is an area of intense research interest. Many probabilistic matrix construc… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 28 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?