2020
DOI: 10.1007/s10346-020-01558-5
|View full text |Cite
|
Sign up to set email alerts
|

Spatial clustering and modelling for landslide susceptibility mapping in the north of the Kathmandu Valley, Nepal

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
15
0
1

Year Published

2021
2021
2024
2024

Publication Types

Select...
6
3
1

Relationship

1
9

Authors

Journals

citations
Cited by 38 publications
(16 citation statements)
references
References 66 publications
0
15
0
1
Order By: Relevance
“…In unsupervised methods, landslide samples are grouped based on their similarity. In [14], the authors proposed an unsupervised method by utilizing six unsupervised well-known methods, including K-means, K-medoids, hierarchical cluster (HC) analysis, expectation-maximization using Gaussian mixture models (EM/GMM), affinity propagation, and mini-batch K-means, to find cluster pattern of landslides, which then acts as training data for the landslide detection problem.…”
Section: A Landslide Detectionmentioning
confidence: 99%
“…In unsupervised methods, landslide samples are grouped based on their similarity. In [14], the authors proposed an unsupervised method by utilizing six unsupervised well-known methods, including K-means, K-medoids, hierarchical cluster (HC) analysis, expectation-maximization using Gaussian mixture models (EM/GMM), affinity propagation, and mini-batch K-means, to find cluster pattern of landslides, which then acts as training data for the landslide detection problem.…”
Section: A Landslide Detectionmentioning
confidence: 99%
“…The SPI and TWI are two important hydrological parameters that are frequently used in the landsliderelated analysis (Nsengiyumva et al 2019, Saha andSaha 2021). The SPI denotes the erosive potential of the streams (Kumar and Anbalagan 2016) and TWI is an indicator of soil moisture contents that contribute to the occurrence of landslide (Pokharel et al 2021). Given β as the steepness of terrain and SCA as specific catchment area, Equations 1 and 2 express the formulation of these conditioning factors: For quantifying the relationship between the landslides and conditioning factors, the FR model is employed.…”
Section: Conditioning Factors and Correlation Assessmentmentioning
confidence: 99%
“…Diversos autores tem utilizado o método K-means para analisar dados morfométricos relacionados a deslizamentos, entre eles destacamos o trabalho de Wang et al (2017) em que utilizaram o algoritmo Kmeans para identificar combinações ideais de fatores causais de deslizamentos, e concluíram que os fatores área de captação e distância à cicatriz tiveram as menores consistências como coeficientes de informação, permitindo obter mapas de suscetibilidade a deslizamentos mais precisos usando os fatores causais. Pokharel et al (2020) testaram estratégias alternativas de amostragem com base em conceitos de distribuição de agrupamento para aumentar a eficiência dos resultados do modelo de suscetibilidade a deslizamentos, em vez do método de seleção aleatória comum para treinamento e teste de amostras. Utilizaram um inventário de deslizamento e seis algoritmos de agrupamento não supervisionados (K-médias, K-medoides, análise de agrupamento hierárquico (HC), expectativa-maximização usando modelos de mistura gaussiana (EM / GMM), propagação de afinidade e mini batch K-means) e geraram seis conjuntos de dados de treinamento diferentes.…”
Section: Discussõesunclassified