Landslide susceptibility maps are vital for disaster management and for plan-ning development activities in the mountainous country like Nepal. In the present study, landslide susceptibility assessment of Mugling-Narayanghat road and its surrounding area is made using bivariate (certainty factor and index of entropy) and multivariate (logistic regression) models. At first, a landslide inventory map was prepared using earlier reports and aerial photographs as well as by carrying out field survey. As a result, 321 landslides were mapped and out of which 241 (75 %) were randomly selected for building landslide susceptibility models, while the remaining 80 (25 %) were used for validating the models. The effectiveness of landslide susceptibility assessment using GIS and statistics is based on appropriate selection of the factors which play a dominant role in slope stability. In this case study, the following landslide conditioning factors 2 were evaluated: slope gradient; slope aspect; altitude; plan curvature; lithology; land use; distance from faults, rivers and roads; topographic wetness index; stream power index; and sediment transport index. These factors were prepared from topographic map, drainage map, road map, and the geological map. Finally, the validation of landslide susceptibility map was carried out using receiver operating characteristic (ROC) curves. The ROC plot estimation results showed that the susceptibility map using index of entropy model with AUC value of 0.9016 has highest prediction accuracy of 90.16 %. Similarly, the susceptibility maps produced using logistic regression model and certainty factor model showed 86.29 and 83.57 % of prediction accuracy, respectively. Furthermore, the ROC plot showed that the success rate of all the three models performed more than 80 % accuracy (i.e. 89.15 % for IOE model, 89.10 % for LR model and 87.21 % for CF model). Hence, it is concluded that all the models employed in this study showed reasonably good accuracy in predicting the landslide susceptibility of Mugling-Narayanghat road section. These landslide suscepti-bility maps can be used for preliminary land use planning and hazard mitigation purpose.
This study compares the landslide susceptibility maps from four application models, namely, (1) the bivariate model of the Dempster-Shafer based evidential belief function (EBF); (2) integration of the EBF in the knowledge-based analytical hierarchy process (AHP) as a pairwise comparison model processed by using all available causative factors; (3) integration of the EBF in the knowledge-based AHP as a pairwise comparison model by using high nominated causative factor weights only; and (4) integrated EBF in the logistic regression (LR) as a multivariate model by using nominated causative factor weights only. These models were tested in Pohang and Gyeongju Cities (South Korea) by using the geographic information system GIS platform. In the first step, a landslide inventory map consisting of 296 landslide locations were prepared from various data sources. Then, a total of 15 landslide causative factors (slope angle, slope aspect, curvature, surface roughness, altitude, distance from drainages, stream power index, topographic wetness index, wood age, wood diameter, wood type, forest density, soil thickness, soil texture, and soil drainage) were extracted from the database and then converted into a raster. Final susceptibility maps exhibit close results from the two models. Models 1 and 3 predicted 82.3% and 80% of testing data during the analysis, respectively. Thus, Models 1 and 3 show better performance than LR. These resultant maps can be used to extend the capability of bivariate statistical based model, by finding the relationship between each single conditioning factor and landslide locations, moreover, the proposed ensemble model can be used to show the interrelationships importance between each conditioning factors, without the need to refer to the multivariate statistic. The research outcome may provide powerful tools for natural hazard assessment and land use planning.
The objective of this paper is to exploit the potential application of an evidential belief function model to landslide susceptibility mapping at Kuala Lumpur city and surrounding areas using geographic information system (GIS). At first, a landslide inventory map was prepared using aerial photographs, high resolution satellite images and field survey. A total 220 landslides were mapped and an inventory map was prepared. Then the landslide inventory was randomly split into a testing dataset 70% (153 landslides) and remaining 30% (67 landslides) data was used for validation purpose. Fourteen landslide conditioning factors such as slope, aspect, curvature, altitude, surface roughness, lithology, distance from faults, ndvi (normalized difference vegetation index), land cover, distance from drainage, distance from road, spi (stream power index), soil type, precipitation, were used as thematic layers in the analysis. The Dempster-Shafer theory of evidence model was applied to prepare the landslide susceptibility maps. The validation of the resultant susceptibility maps were performed using receiver operating characteristics (ROC) and area under the curve (AUC). The validation results show that the area under the curve for the evidential belief function (the belief map) model is 0.82 (82%) with prediction accuracy 0.75 (75%). The results of this study indicated that the EBF model can be effectively used in preparation of landslide susceptibility maps.
An ensemble algorithm of data mining decision tree (DT)-based CHi-squared Automatic Interaction Detection (CHAID) is widely used for prediction analysis in variety of applications. CHAID as a multivariate method has an automatic classification capacity to analyze large numbers of landslide conditioning factors. Moreover, it results two or more nodes for each independent variable, where every node contains numbers of presence or absence of landslides (dependent variable). Other DT methods such as Quick, Unbiased, Efficient Statistic Tree (QUEST) and Classification and Regression Trees (CRT) are not able to produce multi branches based tree. Thus, the main objective of this paper is to use CHAID method to perform the best classification fit for each conditioning factors, then, combined it with logistic regression (LR) to find the corresponding coefficients of best fitting function that assess the optimal terminal nodes. In the first step, a landslide inventory map with 296 landslide locations were extracted from various sources over the Pohang-Kyeong Joo catchment (South Korea). Then, the inventory was randomly split into two datasets, 70 % was used for training the models, and the remaining 30 % was used for validation purpose. Thirteen landslide conditioning factors were used for the susceptibility modeling. Then, CHAID was applied and revealed that some conditioning factors such as altitude, soil drain, soil texture and TWI, as terminal nodes and reflected the best classification fit. Then, a proposed ensemble technique was applied and the interpretations of the coefficients showed that the relationship between the decision tree branch nodes distance from drain, soil drain, and TWI, respectively, leads to better consequences assessment of landslides in the current study area. The validation results showed that both success and prediction rates, 75 and 79 %, respectively. This study proved the efficiency and reliability of ensemble DT and LR model in landslide susceptibility mapping.
This article uses an integrated methodology based on a chi-squared automatic interaction detection (CHAID) model combined with analytic hierarchy process (AHP) for pair-wise comparison to assess medium-scale landslide susceptibility in a catchment in the Inje region of South Korea. An inventory of 3596 landslide locations was collected using remote sensing, and a random sample comprising 30% of these was used to validate the model. The remaining portion (70%) was processed by the nearest-neighbour index (NNI) technique and used for extracting the cluster patterns at each location. These data were used for model training purposes. Ten landslide-conditioning factors (independent variables) representing four main domains, namely (1) topology, (2) geology, (3) hydrology, and (4) land cover, were used to produce two landslide-susceptibility maps. The first landslide-susceptibility map (LSM1) was produced by overlaying the terminal nodes of the CHAID result tree. The second landslide-susceptibility map (LSM2) was produced using the overlay result of AHP pair-wise comparisons of CHAID terminal nodes. The prediction rate curve results were better with LSM2 (area under the prediction curve (AUC) = 0.80) than with LSM1 (AUC = 0.76). The results confirmed that the integrated hybrid model has superior prediction performance and reliability, and it is recommended for future use in medium-scale landslidesusceptibility mapping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.