When direct vision is obstructed, detecting an object usually involves either using mirrors or actively controlling some of the properties of light used for illumination. In our paradigm, we show that a highly scattering wall can transfer certain statistical properties of light, which, in turn, can assist in detecting objects even in non-line-of-sight conditions. We experimentally demonstrate that the transformation of spatial coherence during the reflection of light from a diffusing wall can be used to retrieve geometric information about objects hidden around a corner and assess their location. This sensing approach is completely passive, assumes no control over the source of light, and relies solely on natural broadband illumination.