Urban agglomeration is the key area to realizing regional sustainable development. Timely and accurate assessment of its ESV spatial transfer can provide a scientific basis for intercity environmental cooperation to solve transboundary environmental problems. The ESV and its spatial transfer characteristics in the Central Plains Urban Agglomeration in 2000 and 2018 were quantified by introducing the breaking point model. The findings were as follows: Firstly, taking the central city of Zhengzhou as the transferred-in area, ESV spatial transfer distributions and changes presented a trend of hinterland > metropolitan area. Secondly, the ESV spatial transfer intensity from the metropolitan area to the central city presented an increase trend, with an increase of RMB 498,400–1,053,000/km2, and the ESV spatial transfer intensity from the hinterland to the central city presented a decrease trend, with a decrease of RMB 15,200–814,000/km2 in contrast. Thirdly, a total of RMB 294.763–331.471 billion worth of ESV has been transferred, and only that worth RMB 0.534–1.716 billion reached the central city, accounting for 0.181–0.518% of the total ESV transferred and 2.760–17.482% of the central city’s ESV. Fourthly, the ESV spatial transfer radius of each city was 25.47–214.17 km, but the ESV spatial transfer range of a few cities could reach the central city. Lastly, there was inefficiency in the ESV spatial transfer only in the natural driving spatial transfer pattern due to the spatial heterogeneity of ESV distribution, and there was potential for strengthening the ecological interactions based on space guidance provided by ESV spatial transfer.