With the enhancement of human activities which influence the physical and chemical integrity of ecosystem, it was bound to increase ecological risk to the ecosystem, and the risk assessment of small scale, single pollutant, or only on water quality have been not satisfied the demand of sustainable development of basin water environment. Based on the response relationship between environmental flow requirements guarantee ratio (GEF) and river ecological risk index (ERI), the Sediment Quality Guideline Quotient index (SQG-Q), and the Biotic Index (BI), we construct a new comprehensive ecological risk index (CERI) to evaluate the ecological risk of Luanhe River, China. According to the response relationship between GEF and ERI, upper and lower reaches of Luanhe River (Goutaizi to Hanjiaying) were at moderate risk level (0.41 < ERI < 0.56) in dry season, and all sites were at low risk level (ERI < 0.40) in wet season; considering the contribution of heavy metals contamination in the SQG-Q, the Luanhe River was the most influenced by higher levels of heavy metals in dry season and wet season; when this index was applied to the PAHs levels, only 30 and 20% of the sampling sites appeared to be moderately impacted (0.1 < SQG-Q PAHs < 0.5) by the PAHs in dry season and wet season, respectively. The results of BI showed that half of the sites appeared to be at moderately polluted level (50% of the sites, 0.25 < BI < 0.32) and heavily polluted level (Zhangbaiwan, BI = 0.36) in dry season, and 40% of the sites appeared to be at moderately polluted level (0.26 < BI < 0.29) in wet season. The CERI showed that 70 and 30% of the sites were at moderate risk level in dry season (0.25 < CERI < 0.36) and wet season (0.26 < CERI < 0.29), respectively. The results could give insight into risk assessment of water environment and decision-making for water source security.