Urban morphology has been empirically demonstrated to be self-organized and can be quantified by fractal dimension. However, the spatial variation rule of fractal features at the sub-zone scale has yet to be uncovered, as well as the relationship between fractal dimension values and road network or land-use patterns. In this study, the urban area is partitioned into 158 grid units, with subsequent calculations conducted to determine the fractal dimensions (using 2D box-counting and 3D voxel-counting methods), road network characteristics, and land-use patterns within each individual unit. The pattern of how architectures fill into the 2D or 3D embedding space at the grid level is revealed. Moreover, the spatial relationship between the road network, land-use, and their impacts on the local architectural layout is elucidated by employing MGWR, a model that incorporates the principles of fitting localized spatial regression. The results are as follows: (1) urban morphology follows fractal laws at a sub-zone scale, both in a 2D plane and 3D volume; (2) the filling degree of architecture is high in the urban center but low in the periphery areas; (3) the selected variables fit well with the regression models; (4) there is spatial heterogeneity regarding the influence of each factor. The research findings provide valuable insights into the theoretical relationship between urban morphology and the composite structure of road networks and land use. This facilitates identifying crucial areas and priority directions for urban renewal construction, as well as optimizing architectural design to improve efficiency and functionality.