Abstract. The aim of the present study was to investigate the microstructural characteristics of the brain lobes following radiotherapy (RT) for patients with nasopharyngeal carcinoma (NPC) at distinct times. Diffusion tensor imaging (DTI) and 3D-T1-weighted imaging was performed in 70 age-and sex-matched subjects, 24 of whom were pre-treatment patients. The patients were divided into three groups, according to the time following completion of RT. Fractional anisotropy (FA) and gray matter (GM) volume were determined. The DTI data were analyzed using tract-based spatial statistics and the GM volume was analyzed using voxel-based morphometry (VBM). Compared with the pre-RT group, the mean FA values in the left parietal lobe white matter (WM) and right cerebellum decreased significantly in the post-RT 0-6 month group (P<0.05). In addition, the mean FA values in the right parietal lobe WM decreased significantly in the post-RT 6-12 month group (P<0.05), compared with the pre-RT group. The FA level in the right temporal lobe remained significantly decreased, compared with that in the pre-RT group (P<0.05) for 1 year after RT. Furthermore, compared with pre-RT group, the GM volume in the bilateral frontal lobe, right occipital lobe, left parietal lobe, right temporal lobe and left cerebellum decreased significantly in the post-RT 0-6 month group (P<0.05), and in the bilateral temporal lobe, parietal lobe, right frontal lobe and left cerebellum, the GM volume decreased significantly in the post-RT 6-12 month group (P<0.05). The GM volume in the right temporal lobe, bilateral frontal lobe and bilateral cerebellum remained significantly decreased compared with that in the pre-RT group (P<0.05) for 1 year after RT. A combination of DTI and VBM may be used to determine radiation-induced brain injury in patients treated for NPC.