Behavioral and neurophysiological studies suggest that skill learning can be mediated by discrete, experience-driven changes within specific neural representations subserving the performance of the trained task. We have shown that a few minutes of daily practice on a sequential finger opposition task induced large, incremental performance gains over a few weeks of training. These gains did not generalize to the contralateral hand nor to a matched sequence of identical component movements, suggesting that a lateralized representation of the learned sequence of movements evolved through practice. This interpretation was supported by functional MRI data showing that a more extensive representation of the trained sequence emerged in primary motor cortex after 3 weeks of training. The imaging data, however, also indicated important changes occurring in primary motor cortex during the initial scanning sessions, which we proposed may ref lect the setting up of a task-specific motor processing routine. Here we provide behavioral and functional MRI data on experience-dependent changes induced by a limited amount of repetitions within the first imaging session. We show that this limited training experience can be sufficient to trigger performance gains that require time to become evident. We propose that skilled motor performance is acquired in several stages: "fast" learning, an initial, withinsession improvement phase, followed by a period of consolidation of several hours duration, and then "slow" learning, consisting of delayed, incremental gains in performance emerging after continued practice. This time course may ref lect basic mechanisms of neuronal plasticity in the adult brain that subserve the acquisition and retention of many different skills.The performance of many tasks improves, throughout life, with repetition and practice. Even in adulthood simple tasks such as reaching to a target or rapidly and accurately tapping a short sequence of finger movements, which appear, when mastered, to be effortlessly performed, often require extensive training before skilled performance develops. What changes occur in the adult brain when a new skill is acquired through practice? When, and after how much practice, do these changes occur? Functional reorganization of adult mammalian sensory and motor cortical representations has been found to occur in many different animal models of brain plasticity in the last two decades, advancing the idea that throughout life the functional properties of central nervous system neurons, as well as the neural circuitry within different brain areas, are malleable and retain a functionally significant degree of plasticity (e.g., refs. 1-4). These representational changes have been shown to be induced not only in response to lesions of peripheral or central sensory input or motor output pathways but also, in normal individuals, as a result of practice and experience. The advent of new brain imaging techniques, especially functional MRI (fMRI) (5), which allows repeated mapping of cor...
Performance of complex motor tasks, such as rapid sequences of finger movements, can be improved in terms of speed and accuracy over several weeks by daily practice sessions. This improvement does not generalize to a matched sequence of identical component movements, nor to the contralateral hand. Here we report a study of the neural changes underlying this learning using functional magnetic resonance imaging (MRI) of local blood oxygenation level-dependent (BOLD) signals evoked in primary motor cortex (M1). Before training, a comparable extent of M1 was activated by both sequences. However, two ordering effects were observed: repeating a sequence within a brief time window initially resulted in a smaller area of activation (habituation), but later in larger area of activation (enhancement), suggesting a switch in M1 processing mode within the first session (fast learning). By week 4 of training, concurrent with asymptotic performance, the extent of cortex activated by the practised sequence enlarged compared with the unpractised sequence, irrespective of order (slow learning). These changes persisted for several months. The results suggest a slowly evolving, long-term, experience-dependent reorganization of the adult M1, which may underlie the acquisition and retention of the motor skill.
The present study examined the long-standing concept that changes in hippocampal circuitry contribute to age-related learning impairment. Individual differences in spatial learning were documented in young and aged Long-Evans rats by using a hippocampal-dependent version of the Morris water maze. Postmortem analysis used a confocal laser-scanning microscopy method to quantify changes in immunofluorescence staining for the presynaptic vesicle glycoprotein, synaptophysin (SYN), in the principal relays of hippocampal circuitry. Comparisons based on chronological age alone failed to reveal a reliable difference in the intensity of SYN staining in any region that was examined. In contrast, aged subjects with spatial learning deficits displayed significant reductions in SYN immunoreactivity in CA3 lacunosum-moleculare (LM) relative to either young controls or age-matched rats with preserved learning. SYN intensity values for the latter groups were indistinguishable. In addition, individual differences in spatial learning capacity among the aged rats correlated with levels of SYN staining selectively in three regions: outer and middle portions of the dentate gyrus molecular layer and CA3-LM. The cross-sectional area of SYN labeling, by comparison, was not reliably affected in relation cognitive status. These findings are the first to demonstrate that a circuit-specific pattern of variability in the connectional organization of the hippocampus is coupled to individual differences in the cognitive outcome of normal aging. The regional specificity of these effects suggests that a decline in the fidelity of input to the hippocampus from the entorhinal cortex may play a critical role. Key words: circuit organization; synaptophysin; hippocampus; entorhinal cortex; aging; spatial learning; Morris water mazeA substantial proportion of aged individuals exhibit learning and memory deficits that qualitatively resemble the effects of direct hippocampal damage (for review, see Gallagher and Rapp, 1997). Related alterations are observed in hippocampal neuronal activity in aged rats with spatial learning deficits, including a decline in the scope of information controlling location-specific firing, and modified place field stability Shen et al., 1997; Tanila et al., 1997a,b). Against this background recent stereological investigations indicate that the total number of dentate gyrus granule cells and pyramidal neurons in fields CA3/2 and CA1 remains stable in aged mice (Calhoun et al
Studies in experimental animals and humans have stressed the role of the cerebellum in motor skill learning. Yet, the relative importance of the cerebellar cortex and deep nuclei, as well as the nature of the dynamic functional changes occurring between these and other motor-related structures during learning, remains in dispute. Using functional magnetic resonance imaging and a motor sequence learning paradigm in humans, we found evidence of an experience-dependent shift of activation from the cerebellar cortex to the dentate nucleus during early learning, and from a cerebellar-cortical to a striatal-cortical network with extended practice. The results indicate that intrinsic modulation within the cerebellum, in concert with activation of motor-related cortical regions, serves to set up a procedurally acquired sequence of movements that is then maintained elsewhere in the brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.