Multi-scenario simulation and pattern optimization of land use plays a role in improving regional functionality and balancing anthropogenic and natural environments. The simulation of future land use can provide a reference to demark the regional urban development boundary and identify spaces for ecological protection and agricultural development. Policy makers can use the simulated dynamic process to identify problems in the current trend of regional land use change. On the basis of land use data for Xiong’an New Area, China in 2010, 2015, and 2020, this paper established four scenarios to meet the planning requirements for this region: comprehensive evolution, protection of basic farmland, control of construction land, and prioritization of ecological protection. We used an optimized Markov–FLUS coupling model to simulate future land use changes. We found that the land suitability probability in the four scenarios successfully calculated the effect of land expansion in Xiong’an New Area. In 2010–2015 and 2015–2020, the overall accuracy was 0.9827 and 0.8805, respectively, and Kappa was 0.9675 and 0.7892, respectively. In 2035, the simulation results from the four scenarios and the eight land types were significantly different. Construction land, water area, wetland, and woodland increased by approximately 380%, 178%, 137%, and 3224%, respectively, while dry land and rural land decreased by approximately 55% and 43%, respectively. The multi-scenario simulation results were able to couple production, living, and ecological needs to optimize the spatial pattern and resource allocation in Xiong’an New Area. The scenarios provide new strategies to control population growth, permanently protect essential farmland, and restrict urban development.