Arthropod pests are among the major problems in soybean production and regular field sampling is required as a basis for decision-making for control. However, traditional sampling methods are laborious and time-consuming. Therefore, our goal is to evaluate hyperspectral remote sensing as a tool to establish reflectance patterns from soybean plants infested by various densities of two species of stinkbugs (Euschistus heros and Diceraeus melacanthus (Hemiptera: Pentatomidae)) and two species of caterpillars (Spodoptera eridania and Chrysodeixis includens (Lepidoptera: Noctuidae)). Bioassays were carried out in greenhouses with potted plants placed in cages with 5 plants infested with 0, 2, 5, and 10 insects. Plants were classified according to their reflectance, based on the acquisition of spectral data before and after infestation, using a hyperspectral push-broom spectral camera. Infestation by stinkbugs did not cause significative differences in the reflectance patterns of infested or non-infested plants. In contrast, caterpillars caused changes in the reflectance patterns, which were classified using a deep-learning approach based on a multilayer perceptron artificial neural network. High accuracies were achieved when the models classified low (0 + 2) or high (5 + 10) infestation and presence or absence of insects. This study provides an initial assessment to apply a non-invasive detection method to monitor caterpillars in soybean before causing economic damage.