“…255), (222), (251), (253), (254) then show for all p ∈ [2, ∞) that sup t∈[0,T ]sup N ∈AE sup n∈AE Y N,n t L p (È;H 1/2 ) < ∞. (256)Thus, Lemma 4.13(ii) in Jentzen, Lindner & Pusnik[36] (with w 0, c 0 1) demonstrates for allp ∈ [2, ∞) that sup t∈[0,T ] sup N ∈AE sup n∈AE F N (Y N,n t ) L p (È;H) ≤ |c 1 | sup t∈[0,T ] L p (È;Ê) < ∞(257)Moreover, (281) ensures for all q ∈ [4, ∞] that supt∈[0,T ] sup N ∈AE X N t L q (È;H) < ∞. (290)In addition, (277) implies for all N ∈ AE and alln ∈ AE ∩ [T, ∞) that ½ H\Dn (Y N,n τ N,n ) 2p L 2p (È;Ê) = È Y N,nτ N,n 290) and (291) yield that there exists a C ∈ (0, ∞) such that for alln ∈ AE ∩ [T, ∞) H\Dn (Y N,n τ N,n ) L p (È;H) ≤ sup N ∈AE sup t∈[0,T ] ( X N t L 2p (È;H) + Y N,n t L 2p (È;H) ) ½ H\Dn (Y N,n τ N,n ) L 2p (È;Ê) 4C 2 T (p+1)/2p n − 1 /2 .…”