2021
DOI: 10.1016/j.na.2021.112310
|View full text |Cite
|
Sign up to set email alerts
|

Spatial Sobolev regularity for stochastic Burgers equations with additive trace class noise

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
5
0

Year Published

2022
2022
2022
2022

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(5 citation statements)
references
References 14 publications
0
5
0
Order By: Relevance
“…and this verifies (87). Moreover, Lemma 4.8 in Jentzen, Lindner & Pusnik[36],Lemma 4.3(v) in Jentzen, Lindner & Pusnik[36], and (223) prove that there exists a C ∈ (0, ∞) such that for all N ∈ AE, n ∈ AE, and all x, y ∈ H it holds thatF N (x) − F N (y) H −1/2 = P N (F (P N x) − F (P N y)) H −1/2 ≤ |c 1 | (P N x) 2 − (P N y) 2 H ≤ |c 1 | P N (x − y) H P N (x + y) L ∞ ((0,1),Ê) ≤ C x − y H x + y H 1/2In addition, the fact that inf n∈AE |λ n | ≥ 1, Lemma 4.13(ii) in Jentzen, Lindner & Pusnik[36] (with y 0, c 0 1) and (223) show for all N ∈ AE, n ∈ AE, and all x ∈ D n thatF N (x) H −1/2 ≤ F N (x) H = P N F (P N x) H ≤ |c 1 | √ 3 P N x 2 H 1/2 ≤ |c 1 | √ 3 T γ 1 n −γ 1 ,(249)which verifies (89). Furthermore, (223) imply for all n ∈ AE and all (t, x)∈ [0, T ] × D n that V (t, x) H ≤ x 2 H + 1 ≤ x 2 H 1/2 + 1 ≤ (1 + T γ 1 )n −γ 1 (250)and this shows (90).…”
mentioning
confidence: 91%
See 4 more Smart Citations
“…and this verifies (87). Moreover, Lemma 4.8 in Jentzen, Lindner & Pusnik[36],Lemma 4.3(v) in Jentzen, Lindner & Pusnik[36], and (223) prove that there exists a C ∈ (0, ∞) such that for all N ∈ AE, n ∈ AE, and all x, y ∈ H it holds thatF N (x) − F N (y) H −1/2 = P N (F (P N x) − F (P N y)) H −1/2 ≤ |c 1 | (P N x) 2 − (P N y) 2 H ≤ |c 1 | P N (x − y) H P N (x + y) L ∞ ((0,1),Ê) ≤ C x − y H x + y H 1/2In addition, the fact that inf n∈AE |λ n | ≥ 1, Lemma 4.13(ii) in Jentzen, Lindner & Pusnik[36] (with y 0, c 0 1) and (223) show for all N ∈ AE, n ∈ AE, and all x ∈ D n thatF N (x) H −1/2 ≤ F N (x) H = P N F (P N x) H ≤ |c 1 | √ 3 P N x 2 H 1/2 ≤ |c 1 | √ 3 T γ 1 n −γ 1 ,(249)which verifies (89). Furthermore, (223) imply for all n ∈ AE and all (t, x)∈ [0, T ] × D n that V (t, x) H ≤ x 2 H + 1 ≤ x 2 H 1/2 + 1 ≤ (1 + T γ 1 )n −γ 1 (250)and this shows (90).…”
mentioning
confidence: 91%
“…255), (222), (251), (253), (254) then show for all p ∈ [2, ∞) that sup t∈[0,T ]sup N ∈AE sup n∈AE Y N,n t L p (È;H 1/2 ) < ∞. (256)Thus, Lemma 4.13(ii) in Jentzen, Lindner & Pusnik[36] (with w 0, c 0 1) demonstrates for allp ∈ [2, ∞) that sup t∈[0,T ] sup N ∈AE sup n∈AE F N (Y N,n t ) L p (È;H) ≤ |c 1 | sup t∈[0,T ] L p (È;Ê) < ∞(257)Moreover, (281) ensures for all q ∈ [4, ∞] that supt∈[0,T ] sup N ∈AE X N t L q (È;H) < ∞. (290)In addition, (277) implies for all N ∈ AE and alln ∈ AE ∩ [T, ∞) that ½ H\Dn (Y N,n τ N,n ) 2p L 2p (È;Ê) = È Y N,nτ N,n 290) and (291) yield that there exists a C ∈ (0, ∞) such that for alln ∈ AE ∩ [T, ∞) H\Dn (Y N,n τ N,n ) L p (È;H) ≤ sup N ∈AE sup t∈[0,T ] ( X N t L 2p (È;H) + Y N,n t L 2p (È;H) ) ½ H\Dn (Y N,n τ N,n ) L 2p (È;Ê) 4C 2 T (p+1)/2p n − 1 /2 .…”
mentioning
confidence: 92%
See 3 more Smart Citations