In this article we propose a new, explicit and easily implementable numerical method for approximating a class of semilinear stochastic evolution equations with non-globally Lipschitz continuous nonlinearities. We establish strong convergence rates for this approximation method in the case of semilinear stochastic evolution equations with globally monotone coefficients. Our strong convergence result, in particular, applies to a class of stochastic reaction-diffusion partial differential equations.
Stochastic partial differential equations (SPDEs) have become a crucial ingredient in a number of models from economics and the natural sciences. Many SPDEs that appear in such applications include non-globally monotone nonlinearities. Solutions of SPDEs with non-globally monotone nonlinearities are in nearly all cases not known explicitly. Such SPDEs can thus only be solved approximatively and it is an important research problem to construct and analyze discrete numerical approximation schemes which converge with positive strong convergence rates to the solutions of such infinite dimensional SPDEs. In the case of finite dimensional stochastic ordinary differential equations (SODEs) with non-globally monotone nonlinearities it has recently been revealed that exponential integrability properties of the discrete numerical approximation scheme are a key instrument to establish positive strong convergence rates for the considered approximation scheme. Exponential integrability properties for appropriate approximation schemes have been established in the literature in the case of a large class of finite dimensional SODEs with non-globally monotone nonlinearities. To the best of our knowledge, there exists no result in the scientific literature which proves exponential integrability properties for a time discrete approximation scheme in the case of an infinite dimensional SPDE. In particular, to the best of our knowledge, there exists no result in the scientific literature which establishes strong convergence rates for a time discrete approximation scheme in the case of a SPDE with a non-globally monotone nonlinearity. In this paper we propose a new class of tamed space-time-noise discrete exponential Euler approximation schemes that admit exponential integrability properties in the case of infinite dimensional SPDEs. More specifically, the main result of this article proves that these approximation schemes enjoy exponential integrability properties for a large class of SPDEs with possibly non-globally monotone nonlinearities. In particular, we establish exponential moment bounds for the proposed approximation schemes in the case of stochastic Burgers equations, stochastic Kuramoto-Sivashinsky equations, and two-dimensional stochastic Navier-Stokes equations.
The mild Itô formula proposed in Theorem 1 in [Da Prato, G., Jentzen, A., & Röckner, M., A mild Itô formula for SPDEs, arXiv:1009.3526 (2012, To appear in the Trans. Amer. Math. Soc.] has turned out to be a useful instrument to study solutions and numerical approximations of stochastic partial differential equations (SPDEs) which are formulated as stochastic evolution equations (SEEs) on Hilbert spaces. In this article we generalize this mild Itô formula so that it is applicable to solutions and numerical approximations of SPDEs which are formulated as SEEs on UMD (unconditional martingale differences) Banach spaces. This generalization is especially useful for proving essentially sharp weak convergence rates for numerical approximations of SPDEs.
The Alekseev-Gröbner formula is a well known tool in numerical analysis for describing the effect that a perturbation of an ordinary differential equation (ODE) has on its solution. In this article we provide an extension of the Alekseev-Gröbner formula for Banach space valued ODEs under, loosely speaking, mild conditions on the perturbation of the considered ODEs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.