Leveraging the recent availability of accurate, frequent, and multimodal (radar and optical) Sentinel-1 and -2 acquisitions, this paper investigates the automation of land parcel identi- fication system (LPIS ) crop type classification. Our approach allows for the automatic integration
of temporal knowledge, i.e., crop rotations using existing parcel-based land cover databases and multi-modal Sentinel-1 and -2 time series. The temporal evolution of crop types was modeled with a linear- chain conditional random field, trained with time series of multi-modal (radar and optical)
satellite acquisitions and associated LPIS. Our model was tested on two study areas in France (≥ 1250 km2) which show different crop types, various parcel sizes, and agricultural practices: . the Seine et Marne and the Alpes de Haute-Provence classified accordingly to
a fine national 25-class nomenclature. We first trained a Random Forest classifier without temporal structure to achieve 89.0% overall accuracy in Seine et Marne (10 classes) and 73% in Alpes de Haute-Provence (14 classes). We then demonstrated experimentally that taking into account the temporal
structure of crop rotation with our model resulted in an increase of 3% to +5% in accuracy. This increase was especially important (+12%) for classes which were poorly classified without using the temporal structure. A stark posi- tive impact was also demonstrated on permanent crops, while
it was fairly limited or even detrimental for annual crops.