2016 Annual IEEE Systems Conference (SysCon) 2016
DOI: 10.1109/syscon.2016.7490601
|View full text |Cite
|
Sign up to set email alerts
|

Spatial traffic prediction for wireless cellular system based on base stations social network

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
3
0

Year Published

2017
2017
2022
2022

Publication Types

Select...
2
2
1

Relationship

0
5

Authors

Journals

citations
Cited by 7 publications
(3 citation statements)
references
References 13 publications
0
3
0
Order By: Relevance
“…As an example, the inter-download times of video segments are predicted in [102], where the output sequences are the interdownload times of the already downloaded segments and the states are the instants of the next download request. ARIMA: [13], [38], [40], [46], [47], [54], [58], [59], [63], [100], [119] Kalman: [32], [ CF: [16], [134], [149] Cluster: [15], [34], [51], [117], [122], [123], [148], [156] Decision trees: [35], [98], [ Functional: [28], [29], [38], [64], [99], [104], [105] SVM: [51], [114], [139] ANN: [14], [48], [106], [ 2) Bayesian inference: This approach allows to make statements about what is unknown, by conditioning on what is known. Bayesian prediction can be summarized in the following steps: 1) define a model that expresses qualitative aspects of our knowledge but has unknown parameters, 2) specify a prior probability distribution for the unknown parameters, 3) compute the posterior probability distribution for the parameters, given the observed data, and 4) make predictions by averaging ove...…”
Section: Statistical Methods For Probabilistic Forecastingmentioning
confidence: 99%
See 2 more Smart Citations
“…As an example, the inter-download times of video segments are predicted in [102], where the output sequences are the interdownload times of the already downloaded segments and the states are the instants of the next download request. ARIMA: [13], [38], [40], [46], [47], [54], [58], [59], [63], [100], [119] Kalman: [32], [ CF: [16], [134], [149] Cluster: [15], [34], [51], [117], [122], [123], [148], [156] Decision trees: [35], [98], [ Functional: [28], [29], [38], [64], [99], [104], [105] SVM: [51], [114], [139] ANN: [14], [48], [106], [ 2) Bayesian inference: This approach allows to make statements about what is unknown, by conditioning on what is known. Bayesian prediction can be summarized in the following steps: 1) define a model that expresses qualitative aspects of our knowledge but has unknown parameters, 2) specify a prior probability distribution for the unknown parameters, 3) compute the posterior probability distribution for the parameters, given the observed data, and 4) make predictions by averaging ove...…”
Section: Statistical Methods For Probabilistic Forecastingmentioning
confidence: 99%
“…As an example, the inter-download times of video segments are predicted in [102], where the output sequences are the interdownload times of the already downloaded segments and the states are the instants of the next download request. ARIMA: [13], [38], [40], [46], [47], [54], [58], [59], [63], [100], [119] Kalman: [32], [49] Classification CF: [16], [134], [149] Cluster: [15], [34], [51], [117], [122], [123], [148], [156] Decision trees: [35], [98], [ Functional: [28], [29], [38], [64], [99], [104], [105] SVM: [51], [114], [139] ANN: [14], [48], [106], […”
Section: Statistical Methods For Probabilistic Forecastingmentioning
confidence: 99%
See 1 more Smart Citation