This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2012.Moving from the exact result that drainage network configurations minimizing total energy dissipation are stationary solutions of the general equation describing landscape evolution, we review the static properties and the dynamic origins of the scale-invariant structure of optimal river patterns. Optimal channel networks (OCNs) are feasible optimal configurations of a spanning network mimicking landscape evolution and network selection through imperfect searches for dynamically accessible states. OCNs are spanning loopless configurations, however, only under precise physical requirements that arise under the constraints imposed by river dynamics-every spanning tree is exactly a local minimum of total energy dissipation. It is remarkable that dynamically accessible configurations, the local optima, stabilize into diverse metastable forms that are nevertheless characterized by universal statistical features. Such universal features explain very well the statistics of, and the linkages among, the scaling features measured for fluvial landforms across a broad range of scales regardless of geology, exposed lithology, vegetation, or climate, and differ significantly from those of the ground state, known exactly. Results are provided on the emergence of criticality through adaptative evolution and on the yet-unexplored range of applications of the OCN concept.trees and networks | adaptive evolution | feasible optimality | erosional mechanics | river network patterns A drainage basin of a river is the region from which rainfall becomes runoff flowing downhill and aggregating to form the river streams. Branching river networks in runoff-generating areas are naturally fractal (1)-there are basins within basins within basins, all of them looking alike. Fluvial landforms show deep similarities of the parts and the whole across up to six orders of magnitude despite the great diversity of their drivers and controlsgeology, exposed lithology, vegetation, and climate (2). Observational data reveal the fine detail and large-scale patterns of fluvial landforms. Such data have been used to characterize river basins across our planet (2). River networks are spanning trees: spanning, because there is a route for water to flow from every location of the basin to the main stream; and a tree, because of the absence of loops. The scaling associated with the observed spanning trees is a topic of great interest (3-25). Remarkably, one observes approximate universality in the set of scaling exponents even though one is considering nonequilibrium conditions. As characteristic of conventional critical phenomena, the exponents were found not to be independent of each other. Rather, each of them can be derived through scaling relations postulating the knowledge of geometrical constraints. In addition, as is common in any good detective novel, our story comes with unexpected twists. The first surprise was that th...