Electric-field noise near surfaces is a common problem in diverse areas of physics, and a limiting factor for many precision measurements. There are multiple mechanisms by which such noise is generated, many of which are poorly understood. Laser-cooled, trapped ions provide one of the most sensitive systems to probe electric-field noise at MHz frequencies and over a distance range 30 − 3000 µm from the surface. Over recent years numerous experiments have reported spectral densities of electric-field noise inferred from ion heating-rate measurements and several different theoretical explanations for the observed noise characteristics have been proposed. This paper provides an extensive summary and critical review of electric-field noise measurements in ion traps, and compares these experimental findings with known and conjectured mechanisms for the origin of this noise. This reveals that the presence of multiple noise sources, as well as the different scalings added by geometrical considerations, complicate the interpretation of these results. It is thus the purpose of this review to assess which conclusions can be reasonably drawn from the existing data, and which important questions are still open. In so doing it provides a framework for future investigations of surface-noise processes.