We report the creation of Greenberger-Horne-Zeilinger states with up to 14 qubits. By investigating the coherence of up to 8 ions over time, we observe a decay proportional to the square of the number of qubits. The observed decay agrees with a theoretical model which assumes a system affected by correlated, Gaussian phase noise. This model holds for the majority of current experimental systems developed towards quantum computation and quantum metrology.
More than 100 years ago, Hertz succeeded in transmitting signals over a few metres to a receiving antenna using an electromagnetic oscillator, thus proving the electromagnetic theory developed by Maxwell. Since this seminal work, technology has developed, and various oscillators are now available at the quantum mechanical level. For quantized electromagnetic oscillations, atoms in cavities can be used to couple electric fields. However, a quantum mechanical link between two mechanical oscillators (such as cantilevers or the vibrational modes of trapped atoms or ions) has been rarely demonstrated and has been achieved only indirectly. Examples include the mechanical transport of atoms carrying quantum information or the use of spontaneously emitted photons. Here we achieve direct coupling between the motional dipoles of separately trapped ions over a distance of 54 micrometres, using the dipole-dipole interaction as a quantum mechanical transmission line. This interaction is small between single trapped ions, but the coupling is amplified by using additional trapped ions as antennae. With three ions in each well, the interaction is increased by a factor of seven compared to the single-ion case. This enhancement facilitates bridging of larger distances and relaxes the constraints on the miniaturization of trap electrodes. The system provides a building block for quantum computers and opportunities for coupling different types of quantum systems.
We use a string of confined 40 Ca + ions to measure perturbations to a trapping potential which are caused by light-induced charging of an anti-reflection coated window and of insulating patches on the ion-trap electrodes. The electric fields induced at the ions' position are characterised as a function of distance to the dielectric, and as a function of the incident optical power and wavelength. The measurement of the ion-string position is sensitive to as few as 40 elementary charges per √ Hz on the dielectric at distances of order millimetres, and perturbations are observed for illumination with light of wavelengths as long as 729 nm. This has important implications for the future of miniaturised ion-trap experiments, notably with regards to the choice of electrode material, and the optics that must be integrated in the vicinity of the ion. The method presented can be readily applied to the investigation of charging effects beyond the context of ion trap experiments.
We present a method to measure potentials over an extended region using
one-dimensional ion crystals in a radio frequency (RF) ion trap. The
equilibrium spacings of the ions within the crystal allow the determination of
the external forces acting at each point. From this the overall potential, and
also potentials due to specific trap features, are calculated. The method can
be used to probe potentials near proximal objects in real time, and can be
generalized to higher dimensions.Comment: 7 pages (double spaced), 3 figure
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.