Drought research is an important aspect of drought disaster mitigation and adaptation. For this purpose, we used the Standardized Precipitation Evapotranspiration Index (SPEI) to investigate the spatial-temporal pattern of drought and its impact on crop production. Using monthly precipitation (Precip) and temperature (Temp) data from 1986–2015 for 39 weather stations, the drought index was obtained for the time scale of 3, 6, and 12 months. The Mann–Kendall test was used to determine trends and rates of change. Precip and Temp anomalies were investigated using the regression analysis and compared with the drought index. The link between drought with large-scale atmospheric circulation anomalies using the Pearson correlation coefficient (R) was explored. Results showed a non-uniform spatial pattern of dryness and wetness which varied across Myanmar agro-ecological zones and under different time scales. Generally, results showed an increasing trend for the SPEI in the three-time scales, signifying a high tendency of decreased drought from 1986–2015. The fluctuations in dryness/wetness might linked to reduction crop production between 1986–1999 and 2005, 2008, 2010, 2013 cropping years. Results show relationship between main crops production and climate (teleconnection) factors. However, the low correlation values (i.e., <0.49) indicate the extent of the relationship within the natural variability. However, readers are urged to interpret this result cautiously as reductions in crop production may also be affected by other factors. We have demonstrated droughts evolution and trends using weather stations, thus providing useful information to aid policymakers in developing spatially relevant climate change adaptation and mitigation management plans for Myanmar.