Background:The levels of 5 minerals namely; lead, arsenic, mercury, cadmium, and aluminum were assessed in 10 medicinal plants sampled from 5 different geographical locations to determine the effect of location on the plants’ mineral content.Materials and Methods:Atomic absorption spectrophotometry (wet digestion) was used for the analyzes, and content of the minerals per sample was expressed as μg/g. The levels of minerals were compared to their limit specification for herbs and daily total intake of these minerals. A two-way analysis of variance, which tends to look at the effect of the location and the medicinal plant itself on the plants mineral content, was used in the statistical analysis.Results:Lead (Pb) was present in all plant species examined, except Ocimum gratissimum. One plant exceeded the maximum safety limit for lead. Cadmium was also detected in some of the medicinal plant species (44%) whilst majority were below the detection limit (0.002) representing 56%. 40% of the plant species exceeded the limit for cadmium. Mercury and arsenic in all the plant species were below the detection limit (0.001). Significant variation existed in mineral content for the various locations (P ≤ 0.05).Conclusion:The findings generally suggest the variation in mineral levels for the various locations. Thus, our study has shown that same species of medicinal plants, growing in different environments, accumulates different levels of heavy metals.
Assessing the long-term precipitation changes is of utmost importance for understanding the impact of climate change. This study investigated the variability of extreme precipitation events over Pakistan on the basis of daily precipitation data from 51 weather stations from 1980-2016. The non-parametric Mann–Kendall, Sen’s slope estimator, least squares method, and two-tailed simple t-test methods were used to assess the trend in eight precipitation extreme indices. These indices were wet days (R1 ≥1 mm), heavy precipitation days (R10 ≥ 10 mm), very heavy precipitation days (R20 ≥ 20 mm), severe precipitation (R50 ≥ 50 mm), very wet days (R95p) defining daily precipitation ≥ 95 percentile, extremely wet days (R99p) defining daily precipitation ≥ 99 percentile, annual total precipitation in wet days (PRCPTOT), and mean precipitation amount on wet days as simple daily intensity index (SDII). The study is unique in terms of using high stations’ density, extended temporal coverage, advanced statistical techniques, and additional extreme indices. Furthermore, this study is the first of its kind to detect abrupt changes in the temporal trend of precipitation extremes over Pakistan. The results showed that the spatial distribution of trends in different precipitation extreme indices over the study region increased as a whole; however, the monsoon and westerlies humid regions experienced a decreasing trend of extreme precipitation indices during the study period. The results of the sequential Mann–Kendall (SqMK) test showed that all precipitation extremes exhibited abrupt dynamic changes in temporal trend during the study period; however, the most frequent mutation points with increasing tendency were observed during 2011 and onward. The results further illustrated that the linear trend of all extreme indices showed an increasing tendency from 1980- 2016. Similarly, for elevation, most of the precipitation extremes showed an inverse relationship, suggesting a decrease of precipitation along the latitudinal extent of the country. The spatiotemporal variations in precipitation extremes give a possible indication of the ongoing phenomena of climate change and variability that modified the precipitation regime of Pakistan. On the basis of the current findings, the study recommends that future studies focus on underlying physical and natural drivers of precipitation variability over the study region.
This study uses the quantile mapping bias correction (QMBC) method to correct the bias in five regional climate models (RCMs) from the latest output of the Rossby Center Climate Regional Model (RCA4) over Kenya. The outputs were validated using various scalar metrics such as root-mean-square difference (RMSD), mean absolute error (MAE), and mean bias. The study found that the QMBC algorithm demonstrates varying performance among the models in the study domain. The results show that most of the models exhibit reasonable improvement after corrections at seasonal and annual timescales. Specifically, the European Community Earth-System (EC-EARTH) and Commonwealth Scientific and Industrial Research Organization (CSIRO) models depict remarkable improvement as compared to other models. On the contrary, the Institute Pierre Simon Laplace Model CM5A-MR (IPSL-CM5A-MR) model shows little improvement across the rainfall seasons (i.e., March–May (MAM) and October–December (OND)). The projections forced with bias-corrected historical simulations tallied observed values demonstrate satisfactory simulations as compared to the uncorrected RCMs output models. This study has demonstrated that using QMBC on outputs from RCA4 is an important intermediate step to improve climate data before performing any regional impact analysis. The corrected models may be used in projections of drought and flood extreme events over the study area.
The future planning and management of water resources ought to be based on climate change projections at relevant temporal and spatial scales. This work uses the new regional demarcation for Southern Africa (SA) to investigate the spatio-temporal precipitation variability and trends of centennial-scale observation and modeled data, based on datasets from the sixth phase of the Coupled Model Intercomparison Project (CMIP6). The study employs several statistical methods to rank the models according to their precipitation simulation ability. The Theil–Sen slope estimator is used to assess precipitation trends, with a Student’s t-test for the significance test. The comparison of observation and model historical data enables identification of the best-performing global climate models (GCMs), which are then employed in the projection analysis under two Shared Socioeconomic Pathways (SSPs): SSP2-4.5 and SSP5-8.5. The GCMs adequately capture the annual precipitation variation but with a general overestimation, especially over high-elevation areas. Most of the models fail to capture precipitation over the Lesotho-Eswatini area. The three best-performing GCMs over SA are FGOALS-g3, MPI-ESM1-2-HR and NorESM2-LM. The sub-regions demonstrate that precipitation trends cannot be generalized and that localized studies can provide more accurate findings. Overall, precipitation in the wet and dry seasons shows an initial increase during the near future over western and eastern SA, followed by a reduction in precipitation during the mid- and far future under both projection scenarios. Madagascar is expected to experience a decrease in precipitation amount throughout the twenty-first century.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.