Overuse of antibiotics has led to multidrug resistance in bacteria, posing a tremendous challenge to the healthcare system. There is an urgent need to explore unconventional strategies to overcome this issue. Herein, for the first time, we report a capacitive Co 3 O 4 nanowire (NW) electrode coated on flexible carbon cloth, which is capable of eliminating bacteria while discharging, for the treatment of skin infection. Benefiting from the unique NW-like morphology, the Co 3 O 4 NW electrode with increased active sites and enhanced capacitive property exhibits a prominent antibacterial effect against both Gram-positive and Gram-negative bacteria after charging at a low voltage of 2 V for 30 min. Furthermore, the electrode is demonstrated to be recharged for multiple antibacterial treatment cycles without significant change of antibacterial activity, allowing for practical use in a non-clinical setting. More importantly, this Co 3 O 4 NW electrode is capable of damaging bacterial cell membrane and inducing the accumulation of intracellular reactive oxygen species without impairing viability of skin keratinocytes. In a mouse model of bacterial skin infection, the Co 3 O 4 electrode shows significant therapeutic efficacy by eradicating colonized bacteria, thus accelerating the healing process of infected wounds. This nanostructured capacitive electrode provides an antibiotic-free, rechargeable, and wearable approach to treat bacterial skin infection.