The expression pattern of two calcium binding proteins (CaBP), calbindin D28k (CB) and parvalbumin (PV), in the superior colliculus (SC) of the adult rabbit, as well as the morphology of the immunoreactive cells were examined. The study was performed on 12 rabbits. Coronal sections from postmortem SC were analyzed by light microscopy, and drawings of CaBP‐labeled cells were obtained using a drawing tube. No previous information is available on either the CB/PV expression or the morphology of CB/PV positive cells in the SC of the adult rabbit. Therefore, in this study we show that CB neurons and neuropil form three main tiers: the first located within the stratum zonale (SZ) and the upper part of the stratum griseum superficiale (SGS), the second located within the stratum griseum intermedium (SGI), and the third, located within the medial and central areas of the stratum griseum profundum (SGP). In contrast to this layer labeling, almost no CB‐positivity is found within the other collicular layers. On the other hand, the densest concentration of PV labeled cells and terminals is found within a single dense tier that spanned the ventral part of the startum griseum superficiale (SGS) and the dorsal part of the stratum opticum (SO). Anti‐PV neurons are also scattered through the deeper layers below the dense tier. In contrast, almost no anti‐PV labeled neurons or neuropil are found within the stratum zonale (SZ) and upper SGS. This distribution represents a new pattern of sublamination in the SC of this species. All the previously described cell types in other mammals are observed in the rabbit SC: marginal cells, horizontal cells, pyriform cells, narrow‐field vertical cells, wide‐field vertical cells, and stellate/multipolar cells. Detailed drawings of all these cellular types are represented to show their complete morphology. The results of this study indicate that both CB and PV are present in a variety of neurons, which present a number of homologies between mammals, but have a different location and/or distribution, according to the different species. These findings are thus relevant to better understand the organisation of the SC in mammals. Anat Rec 259:334–346, 2000. © 2000 Wiley‐Liss, Inc.