Cotonou, the economic capital of Benin, is suffering from the impacts of climate change, particularly evident through recurrent floods. To effectively manage these floods and address this issue, it is crucial to have a deep understanding of return periods and hydroclimatic parameters (such as intensity-duration-frequency (IDF) curves and related coefficients), which are essential for designing stormwater drainage structures. Determining return periods and these parameters requires statistical analysis of extreme events, and this analysis needs to be regularly updated in response to climate change. The objective of this study was to determine the necessary return periods and hydroclimatic parameters to improve stormwater drainage systems in the city and its surroundings areas. This required annual maximum precipitation series of 1, 2, 3, 6, 12, and 24 h for 20 years length (1999–2018) as well as flood record data. The intensity series, derived by dividing the amount of rainfall by its duration, was adjusted using Gumbel’s law. IDF curves were constructed based on Montana and Talbot models, and their coefficients were determined according to the corresponding return periods. In 2010, which witnessed devastating floods in the country, the return period for the most intense rainfall events was 40 years, followed by 2013 with a return period of 13.4 years. Consequently, the commonly used 10-year return period for the design of stormwater drainage structures in Cotonou is insufficient. The Talbot model produced the lowest mean square errors for each quantile series and coefficients of determination closest to one, indicating that the parameters obtained from this model are well suited for designing hydraulic structures in Cotonou. The hydroclimatic parameters presented in this study will contribute to the improved design of hydraulic structures in the city of Cotonou.