2007
DOI: 10.1007/s10772-009-9022-z
|View full text |Cite
|
Sign up to set email alerts
|

Speaker distinguishing distances: a comparative study

Abstract: Speaker discrimination is a vital aspect of speaker recognition applications such as speaker identification, verification, clustering, indexing and change-point detection. These tasks are usually performed using distance-based approaches to compare speaker models or features from homogeneous speaker segments in order to determine whether or not they belong to the same speaker. Several distance measures and features have been examined for all the different applications, however, no single distance or feature ha… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
2
0
1

Year Published

2010
2010
2021
2021

Publication Types

Select...
3
2
1

Relationship

0
6

Authors

Journals

citations
Cited by 6 publications
(3 citation statements)
references
References 29 publications
0
2
0
1
Order By: Relevance
“…In speaker clustering, various parametric distance functions were proposed to measure speaker differences [17]. These distance functions are often derived by assuming a certain parametric distribution on the data.…”
Section: B Sequential Groupingmentioning
confidence: 99%
“…In speaker clustering, various parametric distance functions were proposed to measure speaker differences [17]. These distance functions are often derived by assuming a certain parametric distribution on the data.…”
Section: B Sequential Groupingmentioning
confidence: 99%
“…For a large family of general segmentation algorithms, state changes are detected based on comparing the empirical distributions between windows of the time series [14,15,18]. Estimating and comparing probability densities is a difficult statistical problem, particularly in high dimensions.…”
Section: Introductionmentioning
confidence: 99%
“…Στο πλαίσιο της διατριβής εξετάζεται η ανάλυση ανά φώνημα και η αναπαράσταση κάθε ζεύγους από συνεχόμενα πλαίσια φωνής με ένα διάνυσμα φασματικών αποστάσεων και διαφορετικών αναπαραστάσεων του σήματος φωνής. O αποτελεσματικός συνδυασμός διαφορετικών αναπαραστάσεων και διαφορετικών φασματικών αποστάσεων αναμένεται να επαυξήσει την συνολική απόδοση και να διακρίνει καλύτερα τις δύο τάξεις στο συγκεκριμένο πρόβλημα [Garau, 2008;Iyer, 2009;Vepa, 2004]. Τα διανύσματα αυτά χρησιμοποιούνται για την εκπαίδευση του ταξινομητή μιας τάξης.…”
Section: Speech Frames Analysisunclassified