By comparison of the cell surface proteins derived from the outer membrane and fibrils from 14 Prevotella intermedia and 19 Prevotella nigrescens strains using SDS and analysed by SDS-PAGE, it was possible to distinguish the two species. A polypeptide of approx. 21 kDa distinguished P. intermedia strains, whereas two polypeptides of approx. 18 and 22 kDa could be used to identify P. nigrescens strains. Four other human oral black pigmented bacterial species (Porphyromonas gingivalis, Prevotella denticola, Prevotella loescheii and Prevotella melaninogenica) did not have the 18-, 21- or 22-kDa polypeptides shown by P. intermedia or P. nigrescens. The cell-associated proteolytic activity of eight strains of P. intermedia, 14 strains of P. nigrescens and one strain of P. gingivalis (W50) was assessed using four chromogenic substrates. The hydrolysis of the substrate GPPNA (indicative of dipeptidyl peptidase IV-like activity) and SAAPPNA (elastase-like activity) by P. intermedia strains varied from 32 to 114 units and 0.5 to 12.6 units of activity respectively, where one unit was defined as the amount of protease enzyme catalysing the formation of 1 nmol of p-nitroaniline under experimental conditions. 37.5% (3 of 8) of P. intermedia strains hydrolysed SAAPPNA (chymotrypsin-like enzyme activity) with activities of between 7 and 12 units. The hydrolysis of GPPNA and SAAAPNA by P. nigrescens strains was 32-149 and 3-16 units, respectively. 57% (8 of 14) of P. nigrescens strains hydrolysed SAAPPPNA with activities ranging from 3 to 8 units. None of the P. intermedia or P. nigrescens strains examined were found to have trypsin-like enzyme activity (BAPNA hydrolysis). The GPPNA and SAAAPNA hydrolytic activity associated with the proteases from Porphyromonas gingivalis W50 was at least twice that of P. intermedia and P. nigrescens strains. The similar peptidase activities of P. intermedia and P. nigrescens against chromogenic substrates cannot be used to differentiate the species, but SDS-PAGE of cell surface protein extracts allowed unambiguous speciation between P. intermedia and P. nigrescens. This simple technique of cell surface protein analysis can be performed in most laboratories and offers a convenient way by which to differentiate the two species.