This article analyzes the vast material of works devoted to the use of nanofluids in heat exchange equipment. It is proved that the use of the classical theories and equations for calculating the viscosities and thermal conductivities of nanofluids is not correct, since it does not coincide with the experimental results of most independent authors. A model of the chaotic motion of a nanoparticle is presented taking into account surface tension forces in a liquid coolant. The experimental results of the work of Malaysian and Iran authors on the effect of TiO2 nanoparticles with a concentration of 0.5%; 1.0% and 1.5% in the main liquid solution of ethylene glycol (EG) in water in a volume ratio of 40:60% in terms of heat transfer coefficient are compared with our theoretical studies. The results of the experiments presented in: an increase in heat transfer coefficients by 9.72%, 22.75%, 28.92% for 1.5% volume concentration of TiO2 nanoparticles at a coolant temperature of 30℃, 50℃, 70℃, respectively. Our theoretical result: increase in the obtained heat transfer coefficients by 9.79%, 22.22%, 29.09% according to our formulas (9, 10, 15) for calculating turbulent viscosities and thermal conductivities, which takes into account the effect of surface tension forces on the total flow of nanofluids in the channels of heat exchange equipment. A new method for calculating heat exchange equipment using nanofluids is presented, taking into account the action of surface tension forces, as well as predetermining the calculation of turbulent viscosities and thermal conductivity of nanofluids. A theoretical calculations a plate heat exchangers for a technological task performed by classical and new method is presented. Similar results were obtained, which differ by about 0.5 of a percent. The plate heat exchanger was calculated using a new method using TiO2 nanoparticles in water and in a mixture of EG in water in a ratio of 40:60%, as well as when pumpkin vegetable oil was added to milk with the optimal concentration.