Sakacin P is a class IIa bacteriocin that is active against the food-borne pathogen Listeria monocytogenes, and use of this compound as a biopreservative in foods has been suggested. In the present study, we characterized 30 spontaneous sakacin P-resistant mutants of L. monocytogenes obtained after single exposure to sakacin P. The frequency of development of sakacin P resistance for all strains was in the range from 10 ؊8 to 10 ؊9 . Using the 50% inhibitory concentration (IC 50 ) of sakacin P, the strains could be grouped into strains with high levels of resistance (IC 50 , >10 4 ng ml ؊1 ) and strains with low levels of resistance (IC 50 , <10 4 ng ml ؊1 ). Resistant strains belonging to the same IC 50 group also had similar physiological and genetic characteristics. Generally, the resistant strains showed substantial variations in many parameters, such as differences in the stability of the acquired resistance to sakacin P, growth fitness, food-related stress tolerance, and biofilm-forming ability. Fourier transform infrared spectroscopy revealed differences between wild-type and resistant strains in polysaccharide, fatty acid, and, protein regions. A mannose-specific phosphotransferase (PTS) operon has been described for class IIa bacteriocin resistance, and the sakacin P-resistant strains displayed both up-and downregulation of the expression of the mptA gene encoding the PTS system. This is the first comprehensive study of the diversity of a large number of spontaneous resistant mutants obtained after one exposure to a class IIa bacteriocin, particularly to sakacin P. The great diversity among the resistant strains exposed to the same stress conditions suggests that there are different resistance mechanisms.