We investigate the dramatic switch of resistance in ordered correlated insulators, when driven out of equilibrium by a strong voltage bias. Microscopic calculations on a driven-dissipative lattice of interacting electrons explain the main experimental features of resistive switching (RS), such as the hysteretic I-V curves and the formation of hot conductive filaments. The energy-resolved electron distribution at the RS reveals the underlying nonequilibrium electronic mechanism, namely Landau-Zener tunneling, and also justifies a thermal description where the hot-electron temperature, estimated from the first moment of the distribution, matches the equilibrium phase transition temperature. We discuss the tangled relationship between filament growth and negative 1 arXiv:1608.01931v2 [cond-mat.str-el]