Retinal ganglion cells (RGCs) are CNS neurons that output visual information from the retina to the brain, via the optic nerve. The optic nerve can be accessed within the orbit of the eye and completely transected (axotomized), cutting the axons of the entire RGC population. Optic nerve transection is a reproducible model of apoptotic neuronal cell death in the adult CNS [1][2][3][4] . This model is particularly attractive because the vitreous chamber of the eye acts as a capsule for drug delivery to the retina, permitting experimental manipulations via intraocular injections. The diffusion of chemicals through the vitreous fluid ensures that they act upon the entire RGC population. Moreover, RGCs can be selectively transfected by applying short interfering RNAs (siRNAs), plasmids, or viral vectors to the cut end of the optic nerve [5][6][7] or injecting vectors into their target, the superior colliculus 8 . This allows researchers to study apoptotic mechanisms in the desired neuronal population without confounding effects on other bystander neurons or surrounding glia. An additional benefit is the ease and accuracy with which cell survival can be quantified after injury. The retina is a flat, layered tissue and RGCs are localized in the innermost layer, the ganglion cell layer. The survival of RGCs can be tracked over time by applying a fluorescent tracer (3% Fluorogold) to the cut end of the optic nerve at the time of axotomy, or by injecting the tracer into the superior colliculus (RGC target) one week prior to axotomy. The tracer is retrogradely transported, labeling the entire RGC population. Because the ganglion cell layer is a monolayer (one cell thick), RGC densities can be quantified in flat-mounted tissue, without the need for stereology. Optic nerve transection leads to the apoptotic death of 90% of injured RGCs within 14 days postaxotomy [9][10][11] . RGC apoptosis has a characteristic time-course whereby cell death is delayed 3-4 days postaxotomy, after which the cells rapidly degenerate. This provides a time window for experimental manipulations directed against pathways involved in apoptosis. Experiments should be carried out using aseptic technique and following the animal use protocols of your specific institution. Instruments and materials (solutions, test substances, tracers, needles, etc.) coming into contact with living tissue must be sterile to prevent infection and adverse impacts on animal welfare and potential negative impacts on the study.1. Rats will be anaesthetized using a veterinary isoflurane vaporizer system. Use medical grade oxygen at a rate of 0.8 L/min to vaporize the isoflurane gas. Place the animal in the attached anesthesia box and dial in an isoflurane concentration of 4% until the breathing has slowed and the animal is sedate. 2. Next, switch the gas flow to the gas mask attachment for the stereotaxic frame and place the animal in the stereotaxic apparatus. Turn the isoflurane concentration down to 2% and monitor anesthesia. Larger animals (>300g) may require a hi...